Information Consistency of Nonparametric Gaussian Process Methods
نویسندگان
چکیده
منابع مشابه
Information Rates of Nonparametric Gaussian Process Methods
We consider the quality of learning a response function by a nonparametric Bayesian approach using a Gaussian process (GP) prior on the response function. We upper bound the quadratic risk of the learning procedure, which in turn is an upper bound on the Kullback-Leibler information between the predictive and true data distribution. The upper bound is expressed in small ball probabilities and c...
متن کاملPosterior Consistency of Gaussian Process Prior for Nonparametric Binary Regression
Consider binary observations whose response probability is an unknown smooth function of a set of covariates. Suppose that a prior on the response probability function is induced by a Gaussian process mapped to the unit interval through a link function. In this paper we study consistency of the resulting posterior distribution. If the covariance kernel has derivatives up to a desired order and ...
متن کاملPosterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors
Posterior consistency can be thought of as a theoretical justification of the Bayesian method. One of the most popular approaches to nonparametric Bayesian regression is to put a nonparametric prior distribution on the unknown regression function using Gaussian processes. In this paper, we study posterior consistency in nonparametric regression problems using Gaussian process priors. We use an ...
متن کاملPosterior Consistency of Gaussian Process Prior for Nonparametric Binary Regression by Subhashis Ghosal1 and Anindya Roy
Consider binary observations whose response probability is an unknown smooth function of a set of covariates. Suppose that a prior on the response probability function is induced by a Gaussian process mapped to the unit interval through a link function. In this paper we study consistency of the resulting posterior distribution. If the covariance kernel has derivatives up to a desired order and ...
متن کاملInformation value in nonparametric Dirichlet-process Gaussian-process (DPGP) mixture models
This paper presents tractable information value functions for Dirichlet-process Gaussian-process (DPGP) mixture models obtained via collocation methods and Monte Carlo integration. Quantifying information value in tractable closed form is key to solving control and estimation problems for autonomous information-gathering systems. The properties of the proposed value functions are analyzed and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2008
ISSN: 0018-9448
DOI: 10.1109/tit.2007.915707